| Publications |
10 selected publications
1. Jia-Jia Zheng, Qiao-Zhi Li, Zhenzhen Wang,Xiaoli Wang,Yuliang Zhao and Xingfa Gao* Computer-aided Nanodrug Discovery: Recent Progress and Future Prospects, Chemical Society Reviews, 2024,53, 9059-9132.
2. Xuejiao J. Gao,Yuliang Zhao, Xingfa Gao*, Catalytic Signal Transduction Theory Enabled Virtual Screening of Nanomaterials for Medical Functions, Accounts of Chemical Research, 2023, 56,2366-2377.
3. Xiaomei Shen, Zhenzhen Wang,Xuejiao J. Gao, Xingfa Gao*, Reaction Mechanisms and Kinetics of Nanozymes: Insights from Theory and Computation, Advanced Materials, 2024,36,2211151.
4. X. J. Gao, K. Ciura, Y. Ma, A. Mikolajczyk, K. Jagiello, Y. Wan, Y. Gao, J.-J. Zheng, S. Zhong*, T. Puzyn*, X. Gao*, Toward the Integration of Machine Learning and Molecular Modeling for Designing Drug Delivery Nanocarriers. Advanced Materials, 2024,2407793.
5. Jia-Jia Zheng,Xiaoyu Wang,Zeqi Li,Xiaomei Shen,Gen Wei,Pufeihong Xia,Yi-Ge Zhou*,Hui Wei*, Xingfa Gao*, Integrated Computational and Experimental Framework for Inverse Screening of Candidate Antibacterial Nanomedicine, ACS Nano 2024,18,1531-1542.
6. Zhenzhen Wang,Huan Meng,Xuejiao J. Gao,Jia-Jia Zheng, Xingfa Gao*, Remote Substituent Effects on Catalytic Activity of Metal-Organic Frameworks: A Linker Orbital Energy Model, npj Computational Materials, 2023,9,59.
7. Xiaoli Wang,Qiao-Zhi Li*,Jia-Jia Zheng, Xingfa Gao*, Two-Electron or Four-Electron Nanocatalysis for Aerobic Glucose Oxidation: A Mechanism-Driven Prediction Model, ACS Catalysis,2024,14,13040–13048.
8. Qiao-Zhi Li, Huizhen Fan,Zhenzhen Wang,Jia-Jia Zheng,Kelong Fan,Xiyun Yan,and Xingfa Gao*,Mechanism and Kinetics-Guided Discovery of Nanometal Scissors to Cut Phosphoester Bonds,ACS Catalysis. 2023,13,504–514.
9. Shen,X.;Wang,Z.; Gao,X.*;Zhao,Y., Density Functional Theory-Based Method to Predict the Activities of Nanomaterials as Peroxidase Mimics. ACS Catalysis 2020,10 (21),12657-12665.
10. Wang,Z.;Wu,J.;Zheng,J. J.;Shen,X.;Yan,L.;Wei,H.; Gao,X.*;Zhao,Y., Accelerated Discovery of Superoxide-Dismutase Nanozymes Via High-Throughput Computational Screening. Nature Communications 2021,12 (1),6866.
2026
145. Yadong Jin, Yiting Zhou, Zhuo Xu, Zhifei Jin, Huan Meng, Suping Li, Liang Yan, Hui Wang, Jia Jia Zheng, Xingfa Gao, Yuliang Zhao* Silico-Driven Drug Discovery: A Paradigm Shift for Nanomedicine Science and Industry, Nano Today, 2026. https://doi.org/10.1016/j.nantod.2025.102918
2025
144. Jiang Du, Zhenzhen Wang, Quan Wang, Xiang Gu, Xingfa Gao, Hui Wei* t2 Occupancy as an Effective and Predictive Descriptor for the Design of High-Performance Spinel Oxide Peroxidase-like Nanozymes, Angewandte Chemie International Edition, 2025, 64, e202421790.
143. Kamila Jarzynska, Krzesimir Ciura*, Xuejiao J. Gao, Alicja Mikolajczyk, Xingfa Gao*, Tomasz Puzyn* Understanding the Zeta Potential of Nanomaterials Through Predictive Nanoinformatics, Nano Today, 2025, 64, 102783.
142. Xiaolin Song, Xingfa Gao*, Hui Wang, Fangzhi Yu, Mengmeng Qin, Yiye Li, Yixuan Liu, Wei Feng, Caiyu Zhou, Nikita N. Chukavin, Liming Wang, Xuejing Cui, Xinghua Shi*, Lele Li*, Huan Meng*, Guangjun Nie*, Hao Wang*, Jinming Hu*, Liang Yan*, Yu Chen*, Lizeng Gao*, Anton L. Popov*, Hui Wei*, Chunying Chen*, Yuliang Zhao* Artificial Intelligence for Nanomedicine, Science China-Chemistry, 2025, 68, 4552-4594.
141. Ge Fang, Qingrong Dong, Xiaomei Shen, Rui Ye, Yuchen Chang, Kefeng Pu, Yujie Tao, Xingfa Gao, Ruhong Zhou*, Cuicui Ge* Modulation of Bacterial Iron Homeostasis to Enhance Cuproptosis-like Death for the Treatment of Infected Diabetic Wound, ACS Nano, 2025, 19, 15578-15595.
140. Hanbo Li, Xinshuang Gao, Miaoxia Gong, Zhijian Hu, Yinglu Ji, Yanjun Guo*, Jia-Jia Zheng*, Xiaochun Wu* Synthesis of Chiral Plasmonic Nanorods via Regulating Seed-Chiral Ligand Interactions and Their Application in Ag+-Enhanced Photochemical Oxidation of 4-Aminothiophenol, Nano Research, 2025, 18, 94908004.
139. Xinshuang Gao, Miaoxia Gong, Hanbo Li, Jia-Jia Zheng*, Xiaochun Wu* The Delivery of 4-Aminothiophenol to Reactive Sites by Plasmon-Activated Adsorbed Oxygen Species Significantly Enhances Its Azo-Dimerization, ACS Applied Materials & Interfaces, 2025, 17, 62217-62227.
138. Xiaoli Wang, Qiao-Zhi Li*, Yuliang Zhao, Xingfa Gao* Recent Advances in Oxidase-like Nanozymes: Mechanisms, Prediction Models, and Applications, ACS Applied Materials & Interfaces, 2025. https://doi.org/10.1021/acsami.5c15196
137. Xuejie Zhu, Yixuan Li, Qiao-Zhi Li, Nan Wang, Shaoan Yang, Xingfa Gao, Lu Zhang, Peijun Wang, Zihui Liang, Jiaxi Li, Kai Wang, Shengzhong (Frank) Liu, Dong Yang Restrictive Heterointerfacial Delamination in Flexible Perovskite Photovoltaics Using a Bifacial Linker, Advance Materials, 2025, 37, 2419329.
136. Jie Jiang, Huizhen Zheng, Zhenzhen Wang, Xinlian Wang, Qianqian Xie, Xi Liu, Qing Yang, Xiaoming Cai, Xingfa Gao, Ruibin Li, Chunying Chen Intracellular Dehydrogenation Catalysis Leads to Reductive Stress and Immunosuppression, Nature Nanotechnology, 2025, 20, 554-562.
135. 孙博宏, 高兴发, 征甲甲. 同步辐射与人工智能技术在纳米酶研究中的应用进展[J].中国无机分析化学, 2025, 15, 1716-1723. DOI:10.20236/j.CJIAC.2025.11.004.
134. Xiaolin Song, Peiqi Liu, Xinke Zhang, Youbin Zhou, Hujun Qian,* Kai Yang,*Xianren Zhang,* Xingfa Gao,* Jia-Jia Zheng,* Xinghua Shi, and Yuliang Zhao In Silico Methods, Simulations, and Design of Drug-DeliveryNanocarriers, Advance Functional Materials, 2025, e23068.
133. Mingli Li, Qiao-Zhi Li*, Yuliang Zhao, Xingfa Gao* Recent Advances in Machine Learning Models for Predicting Toxicity of Inorganic Nanoparticles. Chem & Bio Engineering 2025, 2, 11, 647–680. https://doi.org/10.1021/cbe.5c00048
132. Jiali Liu, Xiaoli Wang, Yongfu Lian,Xue Wang, Xiuxiu Wang, Xingfa Gao*, Baoyun Sun*, Xihong Guo* Regulation of Graphdiyne-based Nanozymes with Enhanced Oxidase-like Activity by Cobalt and Nitrogen Codoping. Nano Research, 2025, 18, 94907063.
2024
131. Jiahao Wang, Zejun Chang, Mingming Lu, Mingli Li, Xingfa Gao, Jianxun Xu*, Yuliang Zhao* Highly Efficient Growth of Large-Sized Uniform Graphene Glass in Air by Scanning Electromagnetic Induction Quenching Method, Advance Functional Materials, 2024, 34, 2402188.
130. Jiarong Guo,Hui Wang,Xiaoli Wang,Xiaoyu Zhang,Longwei Wang,Zhuo Wang,He Liu,Fene Gao,Xingfa Gao*,Xiaomei Ma*,Jing Liu* Nitrogen-Doped Bismuth Ferrite Nanozymes: Tailored Electronic Structure for Organic Pollutant Degradation, Nano Today, 2024, 58, 102413.
129. X. J. Gao, K. Ciura, Y. Ma, A. Mikolajczyk, K. Jagiello, Y. Wan, Y. Gao, J. Zheng, S. Zhong*, T. Puzyn*, X. Gao*, Toward the Integration of Machine Learning and Molecular Modeling for Designing Drug Delivery Nanocarriers, Advanced Materials, 2024,2407793.
128. Jia-Jia Zheng, Qiao-Zhi Li, Zhenzhen Wang, Xiaoli Wang, Yuliang Zhao and Xingfa Gao* Computer-aided Nanodrug Discovery: Recent Progress and Future Prospects, Chemical Society Reviews, 2024, 53, 9059-9132.
127. Xiaoli Wang, Qiao-Zhi Li*, Jia-Jia Zheng, Xingfa Gao*, Two-Electron or Four-Electron Nanocatalysis for Aerobic Glucose Oxidation: A Mechanism-Driven Prediction Model, ACS Catalysis, 2024, 14, 13040–13048.
126. Kaizheng Feng, Zhenzhen Wang,Shi Wang,Guancheng Wang,Haijiao Dong,Hongliang He,Haoan Wu,Ming Ma*, Xingfa Gao* & Yu Zhang* Elucidating the Catalytic Mechanism of Prussian Blue Nanozymes with Self-increasing Catalytic Activity, Nature Communications, 2024, 15, 5908.
125. Jia-Jia Zheng, Feiyan Zhu,Ningning Song,Fang Deng,Qi Chen,Chen Chen,Jiuyang He*, Xingfa Gao*,Minmin Liang*. Optimizing the Standardized Assays for Determining the Catalytic Activity and Kinetics of Peroxidase-like Nanozymes, Nature Protocols, 2024, 19, 3470–3488.
124. Didar Baimanov,Su Li,Xuejiao J. Gao,Rui Cai,Ke Liu,Junjie Li,Yuchen Liu,Yalin Cong,Xiaoyu Wang,Fen Liu,Qi Li,Guofang Zhang,Hui Wei,Jian Wang,Chunying Chen, Xingfa Gao,* Yang Li,* Liming Wang*, A Phosphatase-like Nanomaterial Promotes Autophagy and Reprograms Macrophages for Cancer Immunotherapy, Chemical Science, 2024, 15, 10838-10850. https://doi.org/10.1039/d4sc01690d.
123. Jia-Jia Zheng,Xiaoyu Wang,Zeqi Li,Xiaomei Shen,Gen Wei,Pufeihong Xia,Yi-Ge Zhou*,Hui Wei*, Xingfa Gao*,Integrated Computational and Experimental Framework for Inverse Screening of Candidate Antibacterial Nanomedicine, ACS Nano, 2024, 18, 1531-1542.
122. Jia-Jia Zheng,Zhenzhen Wang, Xingfa Gao,* Nonradical Surface Chemistry Mechanisms for Catalytic Nanoparticles, The Journal of Physical Chemistry Letters, 2024, 15, 1887.
121. Xiaomei Shen, Zhenzhen Wang,Xuejiao J. Gao, Xingfa Gao*, Reaction Mechanisms and Kinetics of Nanozymes: Insights from Theory and Computation, Advanced Materials, 2024, 36,2211151.

2023
120. Xuejiao J. Gao,Yuliang Zhao, Xingfa Gao*, Catalytic Signal Transduction Theory Enabled Virtual Screening of Nanomaterials for Medical Functions, Accounts of Chemical Research, 2023, 56,2366-2377. https://pubs.acs.org/doi/10.1021/acs.accounts.3c00339

119. Zhenzhen Wang,Huan Meng,Xuejiao J. Gao,Jia-Jia Zheng, Xingfa Gao*, Remote Substituent Effects on Catalytic Activity of Metal-Organic Frameworks: A Linker Orbital Energy Model, npj Computational Materials, 2023, 9, 59. https://doi.org/10.1038/s41524-023-01008-5.

118. Xuejiao J. Gao,Jun Yan, Jia-Jia Zheng,Shengliang Zhong, Xingfa Gao*,Clear-Box Machine Learning for Virtual Screening of 2D Nanozymes to Target Tumor Hydrogen Peroxide,Advanced Healthcare Materials, 2023,12,2202925. https://doi.org/10.1002/adhm.202202925

117.Qiao-Zhi Li,Huizhen Fan,Zhenzhen Wang,Jia-Jia Zheng,Kelong Fan,Xiyun Yan,and Xingfa Gao*,Mechanism and Kinetics-Guided Discovery of Nanometal Scissors to Cut Phosphoester Bonds,ACS Catalysis. 2023,13,504–514. https://pubs.acs.org/doi/10.1021/acscatal.2c05094

116. Cong Liu,Lin Gui,Jia-Jia Zheng,Yong-Qiang Xu,Benli Song,Li Yi,Yijiang Jia,Ayijiang Taledaohan,Yuji Wang, Xingfa Gao*,Zeng-Ying Qiao*,Hao Wang*,Zhiyong Tang*, Intrinsic Strain-mediated Ultrathin Ceria Nanoantioxidant, Journal of the American Chemical Society, 2023,145,19086.
115. Xinshuang Gao,Jiajia Zheng,Hanbo Li,Rui Cai, Xingfa Gao*,and Xiaochun Wu*,Plasmonic Nanostructures Scting As a Light-Driven O2-Sensitive Nitroreductase Mimic for Enhanced Photochemical Oxidation of Para-Aminothiophenol,Nano Research, 2023,in press,https://doi.org/10.1007/s12274-023-6110-3.
114. Kelong Fan*,Lizeng Gao*,Hui Wei*,Bing Jiang*,Daji Wang*,Ruofei Zhang,Jiuyang He,Xiangqin Meng,Zhuoran Wang,Huizhen Fan,Tao Wen,Demin Duan,Lei Chen,Wei Jiang,Yu Lu,Bing Jiang,Yonghua Wei,Wei Li,Ye Yuan,Haijiao Dong,Lu Zhang,Chaoyi Hong,Zixia Zhang,Miaomiao Cheng,Xin Geng,Tongyang Hou,Yaxin Hou,Jianru Li,Guoheng Tang,Yue Zhao,Hanqing Zhao,Shuai Zhang,Jiaying Xie,Zijun Zhou,Jinsong Ren,Xinglu Huang*, Xingfa Gao*,Minmin Liang*,Yu Zhang*,Haiyan Xu*,Xiaogang Qu*,Xiyun Yan* Nanozymes,Progress in Chemistry,2023,35,1-87.
113. Wei Xu,Jia-Jia Zheng,Yu-An Li, Xingfa Gao*,Xiaobo Ji,Yi-Ge Zhou* Nano-Impact Electrochemistry Reveals Kinetics Information of Metal-Ion Battery Materials with Multiple Redox Centers, Angewandte Chemie International Edition,2023,DOI: 10.1002/anie.202306185.
112. Guolong Xing,Jingjuan Liu,Yi Zhou,Shuai Fu,Jia-Jia Zheng,Xi Su,Xingfa Gao,Osamu Terasaki,Mischa Bonn,Hai I. Wang,and Long Chen*,Conjugated Nonplanar Copper-Catecholate Conductive Metal–Organic Frameworks via Contorted Hexabenzocoronene Ligands for Electrical Conduction, Journal of the American Chemical Society 2023,145,16,8979–8987.
111. Wenhui Gao,Jiuyang He,Lei Chen,Xiangqin Meng,Yana Ma,Liangliang Cheng,Kangsheng Tu, Xingfa Gao,Cui Liu*,Mingzhen Zhang*,Kelong Fan*,Dai-Wen Pang* & Xiyun Yan*, Deciphering the Catalytic Mechanism of Superoxide Dismutase Activity of Carbon Dot Nanozyme,Nature Communications, 2023,14,160. https://doi.org/10.1038/s41467-023-35828-2
110. Yusen Li,Xi Su,Wenhao Zheng, Jia-Jia Zheng,Linshuo Guo,Mischa Bonn, Xingfa Gao,Hai I. Wang,Long Chen*, Targeted Synthesis of Isomeric Naphthalene-Based 2D Kagome Covalent Organic Frameworks,Angewandte Chemie International Edition 2023,135,e202216795., https://doi.org/10.1002/anie.202216795
2022
109. Peng Li,Xuejiao J. Gao*,and Xingfa Gao*, Theoretical Investigation on the Oxidoreductase-Mimicking Activity of Carbon-Based Nanozyme,in"Nanozymes: Design,Synthesis,and Applications",Chapter 3pp 67-89. https://pubs.acs.org/doi/10.1021/bk-2022-1422.ch003
108. Liang,H.-W.; Jia,T.; Wang,Z.-Z.; Wang,J.-Q.; Hou,D.-Y.; Wang,L.; Gao,X.*; Sun,H.-L.*;Wang,H.*, Anti-Solvatochromic and Highly Emissive Twisted D–A Structure with Intramolecular Hydrogen Bond. Materials Chemistry Frontiers 2022, 6 (4),512-518. https://doi.org/10.1039/D1QM01530C

107. Quan Wang,Chunyu Li,Xiaoyu Wang,Jun Pu,Shuo Zhang,Like Liang,Lina Chen,Ronghua Liu,Wenbin Zuo,Huigang Zhang,Yanhong Tao, Xingfa Gao,and Hui Wei*, eg Occupancy as a Predictive Descriptor for Spinel Oxide Nanozymes,Nano Letter, 2022,22,24,10003–10009. https://doi.org/10.1021/acs.nanolett.2c03598

106. Gao,M.; Liu,X.; Wang,Z.; Wang,H.; Asset,T.; Wu,D.; Jiang,J.; Xie,Q.; Xu,S.; Cai,X.; Li,J.; Wang,W.; Zheng,H.; Gao,X.; Tarasenko,N.; Rotonnelli,B.; Gallet,J.-J.; Jaouen,F.;Li,R.*, Engineering Catalytic Dephosphorylation Reaction for Endotoxin Inactivation. Nano Today 2022, 44,101456. https://doi.org/10.1016/j.nantod.2022.101456

105. He,Z.; Ye,F.; Zhang,C.; Fan,J.; Du,Z.; Zhao,W.; Yuan,Q.; Niu,W.; Gao,F.; He,B.; Cao,P.; Zhao,L.; Gao,X.; Gao,X.; Sun,B.; Dong,Y.; Zhao,J.; Qi,J.; Liang,X.-J.*;Gao,X.*, A Comparison of Remdesivir Versus Gold Cluster in COVID-19 Animal Model: A Better Therapeutic Outcome of Gold Cluster. Nano Today 2022, 44,101468. https://doi.org/10.1016/j.nantod.2022.101468

104. Li,J.; Gao,X.; Wang,Y.; Xia,T.; Zhao,Y.;Meng,H.*, Precision Design of Engineered Nanomaterials to Guide Immune Systems for Disease Treatment. Matter 2022, 5 (4),1162-1191. https://doi.org/10.1016/j.matt.2022.03.005.

103. Ma,C.-B.; Xu,Y.; Wu,L.; Wang,Q.; Zheng,J.-J.; Ren,G.; Wang,X.; Gao,X.; Zhou,M.*; Wang,M.*;Wei,H.*, Guided Synthesis of a Mo/Zn Dual Single-Atom Nanozyme with Synergistic Effect and Peroxidase-like Activity. Angewandte Chemie International Edition 2022, 61 (25),e202116170. https://doi.org/10.1002/anie.202116170

2021
102. Wang,Z.;Wu,J.;Zheng,J. J.;Shen,X.;Yan,L.;Wei,H.; Gao,X.*;Zhao,Y., Accelerated Discovery of Superoxide-Dismutase Nanozymes Via High-Throughput Computational Screening. Nature Communications 2021,12 (1),6866. https://www.nature.com/articles/s41467-021-27194-8

101. Wu,J.;Wang,Z.;Jin,X.;Zhang,S.;Li,T.;Zhang,Y.;Xing,H.;Yu,Y.;Zhang,H.; Gao,X.*;Wei,H.*, Hammett Relationship in Oxidase-Mimicking Metal-Organic Frameworks Revealed through a Protein-Engineering-Inspired Strategy. Advanced Materials 2021,33 (3),e2005024. https://onlinelibrary.wiley.com/doi/10.1002/adma.202005024

100. Wei,Y.;Gao,X.;Zhao,F.;Baimanov,D.;Cong,Y.;Jiang,Y.;Hameed,S.;Ouyang,Y.; Gao,X.*;Lin,X.*;Wang,L.*, Induced Autophagy of Macrophages and the Regulation of Inflammatory Effects by Perovskite Nanomaterial LaNiO3. Frontiers in Immunology 2021,12,676773. https://www.frontiersin.org/articles/10.3389/fimmu.2021.676773/full

99. Chen,Y.;Shen,X.;Carmona,U.;Yang,F.; Gao,X.*;Knez,M.*;Zhang,L.*;Qin,Y., Control of Stepwise Hg2+ Reduction on Gold to Selectively Tune its Peroxidase and Catalase‐Like Activities and the Mechanism. Advanced Materials Interfaces 2021,8 (11),2100086. https://onlinelibrary.wiley.com/doi/10.1002/admi.202100086
98. Wang,Z.;Shen,X.; Gao,X.*, Density Functional Theory Mechanistic Insight into the Peroxidase- and Oxidase-like Activities of Nanoceria. The Journal of Physical Chemistry C 2021,125 (42),23098-23104. https://pubs.acs.org/doi/10.1021/acs.jpcc.1c04878
97. Li,C.;Li,P.;Li,L.;Wang,D.; Gao,X.*;Gao,X. J.*, A GGA + U Investigation into the Effects of Cations on the Electromagnetic Properties of Transition Metal Spinels. RSC Advances 2021,11 (35),21851-21856. https://pubs.rsc.org/en/content/articlelanding/2021/ra/d1ra03621a#!
96. Chitumalla,R. K.;Kim,K.; Gao,X.*;Jang,J.*, A Density Functional Theory Study on The Underwater Adhesion of Catechol onto A Graphite Surface. Physical Chemistry Chemical Physics 2021,23 (2),1031-1037. https://pubs.rsc.org/en/content/articlelanding/2021/cp/d0cp05623e
95.Meng,X.;Li,D.;Chen,L.;He,H.;Wang,Q.;Hong,C.;He,J.;Gao,X.;Yang,Y.;Jiang,B.;Nie,G.*;Yan,X.*;Gao,L.*;Fan,K.*, High-Performance Self-Cascade Pyrite Nanozymes for Apoptosis-Ferroptosis Synergistic Tumor Therapy. ACS Nano 2021,15 (3),5735-5751. https://pubs.acs.org/doi/10.1021/acsnano.1c01248+

94. Zhang,R.;Chen,L.;Liang,Q.;Xi,J.;Zhao,H.;Jin,Y.; Gao,X.;Yan,X.*;Gao,L.*;Fan,K.*, Unveiling the Active Sites on Ferrihydrite with Apparent Catalase-Like Activity for Potentiating Radiotherapy. Nano Today 2021,41,101317. https://www.sciencedirect.com/science/article/pii/S1748013221002425

93. Zhou,X.;You,M.;Wang,F.;Wang,Z.; Gao,X.;Jing,C.;Liu,J.;Guo,M.;Li,J.;Luo,A.*;Liu,H.*;Liu,Z.*;Chen,C.*, Multifunctional Graphdiyne-Cerium Oxide Nanozymes Facilitate MicroRNA Delivery and Attenuate Tumor Hypoxia for Highly Efficient Radiotherapy of Esophageal Cancer. Advanced Materials 2021,33 (24),e2100556. https://onlinelibrary.wiley.com/doi/full/10.1002/adma.202100556

92. Yao,H.;Yao,H.;Huang,H.; Zhang,L.;Cui,R.;Guo,X.;Cheng,H.;Li,Y.;Li,X.*; Gao,X.;Zhao,L.*;Sun,B.*, Carbon Phase Adjustment by Multi-Configuration Ligand in Endohedral Metallofullerene Derivatives Gd@C82(morpholine)7 Under High Pressure. Nano Today 2021,37,101079. https://www.sciencedirect.com/science/article/pii/S1748013221000049
2020
91. Shen,X.;Wang,Z.; Gao,X.*;Zhao,Y., Density Functional Theory-Based Method to Predict the Activities of Nanomaterials as Peroxidase Mimics. ACS Catalysis 2020,10 (21),12657-12665. https://pubs.acs.org/doi/10.1021/acscatal.0c03426

90. Gao,M.;Wang,Z.;Zheng,H.;Wang,L.;Xu,S.;Liu,X.;Li,W.;Pan,Y.;Wang,W.;Cai,X.;Wu,R.; Gao,X.*;Li,R.*,Two-Dimensional Tin Selenide (SnSe) Nanosheets Capable of Mimicking Key Dehydrogenases in Cellular Metabolism. Angewandte Chemie International Edition 2020,59 (9),3618-3623. https://onlinelibrary.wiley.com/doi/10.1002/anie.201913035

89. Liu,J.;Wang,L.;Shen,X.; Gao,X.*;Chen,Y.;Liu,H.*;Liu,Y.;Yin,D.;Liu,Y.;Xu,W.;Cai,R.;You,M.;Guo,M.;Wang,Y.;Li,J.;Li,Y.;Chen,C.*, Graphdiyne-Templated Palladium-Nanoparticle Assembly as a Robust Oxygen Generator to Attenuate Tumor Hypoxia. Nano Today 2020,34,100907. https://www.sciencedirect.com/science/article/pii/S1748013220300761

88. Wang,X.; Gao,X.*, Substituent Effects on Electronic Structures and Peroxidase-Mimicking Activities of Graphyne and Palladium-Doped Graphyne: A Computational Study. The Journal of Physical Chemistry C 2020,124 (18),9917-9923. https://pubs.acs.org/doi/10.1021/acs.jpcc.0c00542
87. 李玲丽,高兴发*, sp2 碳分子 π电子构型和富勒醇结构模型. 化学通报 2020,83 (4),356-359. http://www.hxtb.org/ch/reader/view_abstract.aspx?file_no=20191220002&flag=1
85. Song,X.;Wang,D.;Gao,X. J.*; Gao,X., Clar Model Modified for Nanographenes. Chemical Physics Letters 2020,750,137487. https://www.sciencedirect.com/science/article/pii/S0009261420304024
84. Pei-Pei Yang,K. Z.,Ping-Ping He,Yu Fan,Xuejiao J. Gao, Xingfa Gao,Zi-Ming Chen,Da-Yong Hou1,Yuan Li1,Yu Yi,Dong-Bing Cheng,Jing-Ping Zhang,Linqi Shi,Xian-Zheng Zhang,Lei Wang*,Hao Wang*, A Biomimetic Platelet Based on Assembling Peptides Initiates Artificial Coagulation. Science Advances 2020,6. eaaz4107 https://www.science.org/doi/10.1126/sciadv.aaz4107

83. Liang,Q.;Xi,J.;Gao,X. J.;Zhang,R.;Yang,Y.; Gao,X.;Yan,X.*;Gao,L.*;Fan,K.*, A Metal-Free Nanozyme-Activated Prodrug Strategy for Targeted Tumor Catalytic Therapy. Nano Today 2020,35,100935. https://www.sciencedirect.com/science/article/pii/S1748013220301043

82. Fu,X.;Wang,D.;Song,X.; Gao,X.;Jang,J.*;Gao,X. J.*, Boron-Based Metallocene-Like Molecules and Nanowires: A Computational Study. Chemical Physics Letters 2020,747,137336. https://www.sciencedirect.com/science/article/pii/S0009261420302517
81. Cheng,Y.;Kong,X.;Chang,Y.;Feng,Y.;Zheng,R.;Wu,X.;Xu,K.; Gao,X.;Zhang,H.*, Spatiotemporally Synchronous Oxygen Self-Supply and Reactive Oxygen Species Production on Z-Scheme Heterostructures for Hypoxic Tumor Therapy. Advanced Materials 2020,32 (11),e1908109. https://onlinelibrary.wiley.com/doi/10.1002/adma.201908109

80. Wang,Z.;Shen,X.; Gao,X.*;Zhao,Y., Simultaneous Enzyme Mimicking and Chemical Reduction Mechanisms for Nanoceria As a Bio-Antioxidant: A Catalytic Model Bridging Computations and Experiments for Nanozymes. Nanoscale 2019,11 (28),13289-13299. https://pubs.rsc.org/en/content/articlelanding/2019/NR/C9NR03473K
79. Liu,J.;Shen,X.;Baimanov,D.;Wang,L.;Xiao,Y.;Liu,H.;Li,Y.; Gao,X.*;Zhao,Y.;Chen,C.*, Immobilized Ferrous Ion and Glucose Oxidase on Graphdiyne and Its Application on One-Step Glucose Detection. ACS Applied Materials & Interfaces 2019,11 (3),2647-2654. https://pubs.acs.org/doi/10.1021/acsami.8b03118
78. Wang,X.;Gao,X. J.;Qin,L.;Wang,C.;Song,L.;Zhou,Y. N.;Zhu,G.;Cao,W.;Lin,S.;Zhou,L.;Wang,K.;Zhang,H.;Jin,Z.;Wang,P.; Gao,X.;Wei,H.*, eg Occupancy As an Effective Descriptor for the Catalytic Activity of Perovskite Oxide-Based Peroxidase Mimics. Nature Communications 2019,10 (1),704. https://www.nature.com/articles/s41467-019-08657-5
2018
78. Kong,X. P.;Shen,X.;Jang,J.*; Gao,X.*, Electron Pair Repulsion Responsible for the Peculiar Edge Effects and Surface Chemistry of Black Phosphorus. Journal of Physical Chemistry Letters 2018,9 (5),947-953. https://pubs.acs.org/doi/10.1021/acs.jpclett.8b00128
77. Hu,Y.;Gao,X. J.;Zhu,Y.;Muhammad,F.;Tan,S.;Cao,W.;Lin,S.;Jin,Z.; Gao,X.*;Wei,H.*, Nitrogen-Doped Carbon Nanomaterials as Highly Active and Specific Peroxidase Mimics. Chemistry of Materials 2018,30 (18),6431-6439. https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.8b02726
76. Li,C.;Gao,X. J.;Yao,H.;Huang,H.;Cui,R.;Guo,X.;Zhang,L.;Liu,B.;Xu,B.;Shi,W.; Dong,J.;Feng,L.*; Gao,X.*;Sun,B.*, Highly Delocalized Endohedral Metal in Gd@C2v(9)-C82 Metallofullerenes co-Crystallized with α-S8. Nano Research 2018,11 (4),2277-2284. https://link.springer.com/article/10.1007/s12274-017-1849-z
75. Xiaomei Shen,X. G., Xingfa Gao*, Theoretical Studies on The Mechanisms of The Enzyme-like Activities of Precious-metal and Carbon Nanomaterials. Progress in Biochemistry and Biophysics 2018,45 (2),204-217. https://en.cnki.com.cn/Article_en/CJFDTotal-SHSW201802008.htm
74. Chen,W. H.;Gao,X. J.*; Gao,X.*, Methanol-Assisted Phthalimide Ring Opening: Concerted or Stepwise Mechanism? The Journal of Physical Chemistry A 2018,122 (12),3115-3119. https://pubs.acs.org/doi/10.1021/acs.jpca.7b11347
73. Wang,Z.; Gao,X.*;Zhao,Y.*, Mechanisms of Antioxidant Activities of Fullerenols from First-Principles Calculation. The Journal of Physical Chemistry A 2018,122 (41),8183-8190. https://pubs.acs.org/doi/10.1021/acs.jpca.8b06340
72. Liu,H.; Gao,X.*;Zhao,Y., Boron and Nitrogen Co-Doping of Graphynes without Inducing Empty or Doubly Filled States in π-Conjugated Systems. The Journal of Physical Chemistry C 2018,123 (1),625-630. https://pubs.acs.org/doi/10.1021/acs.jpcc.8b10684
70. Xu,Z.;Qiu,Z.;Liu,Q.;Huang,Y.;Li,D.;Shen,X.;Fan,K.;Xi,J.;Gu,Y.;Tang,Y.;Jiang,J.;Xu,J.;He,J.; Gao,X.;Liu,Y.;Koo,H.;Yan,X.;Gao,L.*, Converting Organosulfur Compounds to Inorganic Polysulfides Against Resistant Bacterial Infections. Nature Communications 2018,9 (1),3713. https://www.nature.com/articles/s41467-018-06164-7
69. Xiaju Cheng,X. N.,Renfei Wu,Yu Chong, Xingfa Gao,Cuicui Ge*,Jun-Jie Yin, Evaluation of the Structure–Activity Relationship of Carbon Nanomaterials as Antioxidants. Nanomedicine 2018. 13(7):733-747. https://pubmed.ncbi.nlm.nih.gov/29542368/
68. Fang,G.;Li,W.;Shen,X.;Perez-Aguilar,J. M.;Chong,Y.; Gao,X.;Chai,Z.;Chen,C.*;Ge,C.*;Zhou,R.*, Differential Pd-Nanocrystal Facets Demonstrate Distinct Antibacterial Activity Against Gram-Positive and Gram-Negative Bacteria. Nature Communications 2018,9 (1),129. https://www.nature.com/articles/s41467-017-02502-3
2017
66. Gao,X.*;Shen,X., Face-to-Face Crosslinking of Graphdiyne and Related Carbon Sheets Toward Integrated Graphene Nanoribbon Arrays. Carbon 2017,125,536-543. https://www.sciencedirect.com/science/article/pii/S0008622317309806
65. Gao,X.*;Gao,X. J., Metal-like Boronic-Organic Frameworks: A Design and Computation. Inorganic Chemistry 2017,56 (5),2490-2495. https://pubs.acs.org/doi/10.1021/acs.inorgchem.6b02639
63. Gao,X. J.; Gao,X.*, Computational Study on the Mechanisms of Multiple Complexation of CO and Isonitrile Ligands to Boron. The Journal of Physical Chemistry A 2017,121 (13),2688-2697. https://pubs.acs.org/doi/10.1021/acs.jpca.7b01313
2016
62. Gao,X.;Chen,B.-Z.; Gao,X.*, Isolated Aromatic Patches as A Rule to Select Metallofullerene Multiple Adducts with High Chemical Stabilities. Carbon 2016,96,980-986. https://www.sciencedirect.com/science/article/pii/S0008622315303638
61. Ge,C.;Fang,G.;Shen,X.;Chong,Y.;Wamer,W. G.; Gao,X.*;Chai,Z.;Chen,C.*;Yin,J. J.*, Facet Energy versus Enzyme-like Activities: The Unexpected Protection of Palladium Nanocrystals against Oxidative Damage. ACS Nano 2016,10 (11),10436-10445. https://pubs.acs.org/doi/10.1021/acsnano.6b06297
59. Gao,X. J.;Shen,X.;Chen,B.-Z.*; Gao,X.*, Improved Description for the Structures of Fullerenols C60(OH)n (n = 12–48) and C2v(9)-C82(OH)x (x = 14–58). The Journal of Physical Chemistry C 2016,120 (21),11709-11715. https://pubs.acs.org/doi/abs/10.1021/acs.jpcc.6b02506
2015
58. Shen,X.;Liu,W.;Gao,X.;Lu,Z.;Wu,X.*; Gao,X.*, Mechanisms of Oxidase and Superoxide Dismutation-like Activities of Gold,Silver,Platinum,and Palladium,and Their Alloys: A General Way to the Activation of Molecular Oxygen. Journal of the American Chemical Society 2015,137 (50),15882-15891.