1. Wang, J.; Liu, L.; Guo, J.; Zhao, X.; Zhang, Y.; Yan, Y.*, Gold Nanoparticle in chemoelectronics: Fundamentals, challenges, and future prospects, Adv. Funct. Mater., 2024, 34, 2309531.
2. Zhang, Y.; Liu, L.; Tu, B.; Cui, B; Guo, J.; Zhao, X.; Wang, J.; Yan, Y.*, An artificial synapse based on molecular junctions, Nature Commun. 2023, 14, 247.
3. Wang, C.; Liu, L.; Wang, J.; Yan, Y.*, Electrochemically switchable circularly polarized photoluminescence within self-assembled conducting polymer helical microfibers, J. Am. Chem. Soc., 2022, 144, 19714-19718.
4. Guo, J.; Liu, L.; Bian, B.; Wang, J.; Zhang, Y.; Yan, Y.*, Field-created coordinate cation bridges enable conductance modulation and artificial synapse within metal nanoparticles, Nano Lett., 2022, 22, 6794-6801.
5. Zhao, X.; Yang, L.; Guo, J.; Xiao, T.; Zhou, Y.; Zhang, Y.; Li, T.; Grzybowski, B.*, Yan, Y.*, Transistors and logic circuits based on metal nanoparticles and ionic gradients, Nature Electron., 2021, 4, 109–115.
6. Jia, L.; Wang, C.; Zhang, Y.; Yang, L.*; Yan, Y.*, Efficient spin filtering in self-assembled superhelical conducting polymer microfibers, ACS Nano, 2020, 14, 6607-6615.
7. Feng, X.; Zhao, X.; Yang, L.; Li, M.; Qie, F.; Guo, J.; Zhang, Y.; Li, T.; Yuan, W.; Yan, Y. *, All-carbon materials p-n diode, Nature Commun. 2018, 9, 3750.
8. Zhao, X.; Tu, B.; Li, M.; Feng, X.; Zhang, Y.; Fang, Q.; Li, T.; Grzybowski, B.*, Yan, Y.*, Switchable counterion gradients around charged metallic nanoparticles enable reception of radio waves, Science Adv., 2018, 4, eaau3546.
9. Yan, Y.; Warren, S.; Fuller, P.; Grzybowski, B.*, Chemoelectronic circuits based on metal nanoparticles. Nature Nanotechnol. 2016, 11, 603-608 (cover).
10. Yan, Y.; Timonen, J.; Grzybowski, B.*, A long-lasting, concentration cell based on a magnetic electrolyte, Nature Nanotechnol. 2014, 9, 901-906.