国家纳米科学中心在有机太阳能电池界面修饰研究方面取得新进展

发布时间:2021-09-30

近日,国家纳米科学中心周惠琼研究员课题组与裘晓辉研究员、张勇研究员课题组合作,在有机太阳能电池界面层的纳米级表面能分布调控方面取得重要进展。相关研究成果“Nanoscale Heterogeneous Distribution of Surface Energy at Interlayers in Organic Bulk-Heterojunction Solar Cells”发表于《Joule》杂志上(Joule, 2021, https://doi.org/10.1016/j.joule.2021.09.001)。 

在溶液法制备的有机太阳能电池中,表面能对体异质结薄膜形貌的形成起到关键作用。通过给体与受体的表面能差异可以预测有机本体异质结BHJ)薄膜中两相的混溶性,而底部界面层的表面能可以调节体异质结的垂直分布和分子堆积取向。薄膜的表面能常采Owens-Wendt模型通过测量接触角的方法得到,但这种测试方法无法反映纳米尺寸范围内的表面能分布,无法直接解释体异质结结构中纳米级的堆积和相分离变化。 

周惠琼研究员课题组长期致力于溶液法太阳能电池的界面研究,针对界面层表面能的调控开展了一系列的研究。通过引入氧化钨(WOx纳米颗粒提高了聚34-乙烯二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)空穴传输层的表面能,并在有机非富勒烯太阳能电池中实现了80%的填充因子(Adv. Mater., 2018, 30, 1801801)。而后进一步深入探究了活性层堆积取向、界面层表面能与器件性能之间的关系(Adv. Mater. 2019, 31 1806921),并将此界面修饰策略应用于反型器件电子传输层研究之中(J. Mater. Chem. A, 2019, 7, 3570–3576)。此外,该策略也能应用于钙钛矿太阳能电池,采用生物聚合物肝素钠改善了电子传输层的表面能,钝化了界面缺陷,同时提高器件的效率和稳定性(Adv. Mater., 2018, 30, 1706924)。 

在前期工作的基础上,该研究团队利用基于原子力显微镜的峰值力定量纳米力学模式(Peak-force Quantitative Nanomechanical MappingsPFQNM)技术,成功表征了有机太阳能电池空穴传输层表面的纳米级表面能分布。研究中发现,掺杂不同横向尺寸的MoS2纳米片,可以有效调控PEDOT:PSS层的表面能微观分布,增强表面能分布的非均一性。这种非均一性的纳米级表面能分布可以进一步调控活性层的分子排列和结晶取向,调控活性层给体和受体间的相分离。由于表面能分布调控策略对活性层形貌的优化,太阳能电池器件的性能和稳定性均得到提升,并实现了18.27%的光电转换效率(经中国计量科学研究院认证的效率为17.80%)。当给受体之间表面能之差越大,该策略对其器件效率的提升率越高。  

国家纳米科学中心的博士研究生李彦勋、丁建伟和硕士研究生梁程为该文章的共同第一作者,周惠琼研究员、裘晓辉研究员和张勇研究员为共同通讯作者。上述研究工作得到了其他合作者的支持,以及科技部(2017YFA0206600)、国家自然科学基金(No. 21922505, 21773045)和中国科学院基金(No.YJKYYQ20190010No. XDB36000000)等项目的资助。 

  图:PEDOT:PSS薄膜和MP-2薄膜的纳米级表面能分布;非均一性的表面能分布与给受体间的表面能差异、器件效率提高之间的联系